## Measuring Mass

Exploring Diversity of Matter by Its Physical
Properties

## Mass

- Mass is the amount of matter in an object.
-SI unit: kilogram (kg)
- $1 \mathrm{~kg}=1000 \mathrm{~g}$
$1 \mathrm{~g}=1000 \mathrm{mg}$


An adult brain: $1.3 \sim 1.4 \mathrm{~kg}$

## Beam Balance and Electronic Balance

Beam balance and electronic balance are used to give very accurate measurements.


Beam balance
Electronic balance

## Mass VS Weight

Mass should not be confused with weight.

## Mass Weight

The amount of matter in an object.

Constant everywhere in the universe.

Measured in kilograms (kg). Measured using beam balance.

The pull of gravity acting on an object.

Changes from place to place.
Measured in Newton ( N ).
Measured using spring balance.

## Mass VS Weight



## Weight

The gravitational force on Earth is 6 times greater than that on Moon. Thus an object weighs 6 times heavier on Earth than on Moon.

## Calculate your weight on other planets

http://www.exploratorium.edu/ronh/weight/index.html

## Temperature

Exploring Diversity of Matter by Its Physical
Properties

## Temperature

Temperature refers to the degree of hotness and coldness.

We are able to sense the hotness and coldness of an object by touching, but we are not able to tell the exact measurement of temperature.

## Interesting Information

What do you think is the hottest planet?

Venus
It has an average temperature of $400^{\circ} \mathrm{C}$ and it is hot enough to melt lead.


## Interesting Information

What do you think is the temperature of the centre of the earth?

Approximately $5000^{\circ} \mathrm{C}$ which is approximately the same temperature as the sun.


## Mercury Thermometer

Unit: Kelvin (K) (S.I. Unit) Degree Celsius ( ${ }^{\circ} \mathrm{C}$ )

Apparatus used for measuring temperature. laboratory thermometer mercury thermometer digital thermometer infrared thermometer

## Measuring Length

## Length

oLength is the distance between 2 points. oSI unit: metre (m)

$1 \mathrm{~km}=\underline{1000} \mathrm{~m}=\underline{100,000} \mathrm{~cm}=\underline{1,000,000} \mathrm{~mm}$

Range
Suitable Instruments
Accuracy of Instruments

Several metres (m)

Several centimetres (cm) to 1 m

Between 1cm to 10 cm

Less than 1 cm

Vernier Calipers

Micrometer
Screw Gauge
0.1 cm
(or 1 mm )
0.1 cm
(or 1 mm )
0.01 cm
(or 0.1 mm )
0.001 cm
(or 0.01 mm )

## Measuring Tape

- Can be used to measure distances of up to several hundred metres.

OSmallest division is $\mathbf{1 ~ m m}$ or $\mathbf{0 . 1} \mathbf{~ c m}$.
0 A special property of the measuring tape is that it is soft and flexible, and are often used in measuring the diameters of round objects.

## Metre Rule

0 Measures length in centimetres, with an accuracy of 1 mm or $\mathbf{0 . 1} \mathbf{~ c m}$.
o To measure the length of an object using a metre rule, place one end of the object against the zero mark, and read off the mark on the rule at the other end of the object
owhen taking a reading, parallax error may occur when it is not read at eye level.
oWe can avoid parallax error by turning up the ruler instead of lying it flat.

## Metre Rule


owhen taking a reading, parallax error may occur when it is not read at eye level.
oWe can avoid parallax error by turning up the ruler instead of lying it flat.


## External Caliper

oMeasures external diameter of objects.


## Internal Caliper

oMeasures internal diameter of objects.


## Vernier Caliper

omeasure short lengths with accuracy of $\mathbf{0 . 1}$ $\mathbf{m m}$ or 0.01 cm .
oEach division on main scale: $\mathbf{1} \mathbf{~ m m}$
oEach division on vernier scale: 0.1 mm


## Parts of Vernier Calliper



| Parts | Functions |
| :--- | :--- |
| Inside jaws | To measure internal length |
| Outside jaws | To measure external length |
| Tail | To measure depth |

## Using the Vernier Caliper



## Step 2

Read the main scale directly opposite the zero mark on the vernier scale. In this case, the reading on the main scale is 31 mm or 3.1 cm .

## Step 3

The 4th vernier mark coincides with a marking on the main scale. This gives a reading of +0.4 mm or +0.04 cm to be added to the main scale reading.

## Step 4

The diameter is found by adding the main scale reading to the vernier scale reading:
$31 \mathrm{~mm}+0.4 \mathrm{~mm}=31.4 \mathrm{~mm}$

## An animation on using the vernier calipers



- Right-click to pause the animation.
$2^{\text {nd }}$ External diameter animation
Internal diameter animation


## Using the Vernier Caliper

Example: To measure the external length of a container
Main scale reading $=2.7 \mathrm{~cm}$


Main scale reading $=2.7 \mathrm{~cm}$
Vernier scale $-3^{\text {rd }}$ line is aligned with a line in the main scale $=0.03 \mathrm{~cm}$

External length $=2.70+0.03=2.73 \mathrm{~cm}$

## Using the Vernier Caliper

When finding the diameter of an object, take several measurements and use the average.


## Zero Error

Zero error is a condition in which zero marks on the two scales do not align when the jaws are closed, resulting in inaccurate readings.

It is a condition where the initial reading at the start is not zero.


## Correcting Zero Error

To correct the zero error, follow the steps below:

1. Note the position of the zero on the vernier and main scales.
2. Note the line on the vernier scale which aligns with one on the main scale.

Corrected Reading = Measured Reading - Zero Error

## Zero Error (Positive)

-Zero mark of the Vernier scale is to the right of the zero mark of the main scale.
-Measurements made are greater than the actual value by the value of the zero error.

Main scale

Vernier scale

## Zero Error (Positive)


$4^{\text {th }}$ line after zero on vernier scale coincides with line on main scale; zero error $=+0.04 \mathrm{~cm}$

Zero error is subtracted from reading.
Correcting zero error animation

## Zero Error (Negative)

-Zero mark of the Vernier scale is to the left of the zero mark of the main scale.
-Measurements taken are less than the actual value.


## Zero Error (Negative)


$7^{\text {th }}$ line after zero on vernier scale coincides with line on main scale; counting from the back zero error $=-0.03 \mathrm{~cm}$

Zero error is subtracted to the reading.

## Using the Micrometer screw

## gauge

## Step 1

Turn the thimble until the anvil and the spindle gently grip the object. Then turn the ratchet until it starts to click.

## Step 2

Read the main scale reading at the edge of the thimble. In this case, it is 8.5 mm .


## Step 3

The thimble scale has 50 divisions, each of which is 0.01 mm . Take the thimble reading opposite the datum line of the main scale. In this case, it is 40 divisions, which gives a value of $40 \times 0.01 \mathrm{~mm}$ $=0.40 \mathrm{~mm}$.

Diameter is found by adding the main scale reading to the thimble reading: $8.5 \mathrm{~mm}+0.40 \mathrm{~mm}=8.90 \mathrm{~mm}$

## Zero Error (Positive)

-Datum line of the main scale is higher than the zero mark of the thimble scale.
-Measurements made are greater than the actual value by the value of the zero error.


## Zero Error (Negative)

-Datum line of the main scale is lower than the zero mark of the thimble scale.
-Measurements made are smaller than the actual value by the value of the zero error.


## Measuring Area

Exploring Diversity of Matter by Its Physical
Properties

## Area

oArea is the amount of space taken up by the surface of an object.
oSI unit: square metre ( $\mathrm{m}^{2}$ )
$01 \mathrm{~m}^{2}=100 \times 100 \mathrm{~cm}^{2}$
$01 \mathrm{~cm}^{2}=10 \times 10 \mathrm{~mm}^{2}$
$01 \mathrm{~km}^{2}=1000 \times 1000 \mathrm{~m}^{2}$


## Calculation Time!

Questions:

1) $100 \mathrm{~m}^{2}=$
 $\mathrm{cm}^{2}$
2) $5 \mathrm{~cm}^{2}=$ $\qquad$ $\mathrm{mm}^{2}$
3) $0.6 \mathrm{~km}^{2}=$ $\square$ $m^{2}$
4) $80 \mathrm{~cm}^{2}=\ldots \mathrm{m}^{2}$
5) $4000 \mathrm{~mm}^{2}=\ldots \quad \mathrm{cm}^{2}$

Answers:

1) $1,000,000 \mathrm{~cm}^{2}$
2) $500 \mathrm{~mm}^{2}$
3) $600,000 \mathrm{~m}^{2}$
4) $0.008 \mathrm{~m}^{2}$
5) $40 \mathrm{~cm}^{2}$

## Areas of regular surfaces

 -Calculate from formulae.| Square | Rectangle | Parallelogram |
| :---: | :---: | :---: |
|  | $A=1 x b$ |  |
| Circle | Triangle | Trapezium |
| $A=\pi r^{2}$ | $A=1 / 2 b \times h$ |  |

## Areas of Irregular Surfaces

oThe areas of irregular surfaces can be estimated by first dividing them into squares and counting them.
$\circ$ An incomplete square is counted as one if its area is more than or equal to half of the area of a unit square.
OIf the areas of the incomplete square are less than half, then they are not counted.

## Areas of Irregular Surfaces

 Example:

Total number of squares $\approx 14$
Area of one square $=1 \mathrm{~cm} \times 1 \mathrm{~cm}=1 \mathrm{~cm}^{2}$
Area of the irregular object $\approx 14 \times 1 \mathrm{~cm}^{2}$ $\approx 14 \mathrm{~cm}^{2}$

## Measuring Volume

Exploring Diversity of Matter by Its Physical
Properties

## Volume

oVolume is the amount of space a substance occupies.
oSI unit: cubic metre ( $\mathrm{m}^{3}$ )
$01 \mathrm{~m}^{3}=100 \times 100 \times 100 \mathrm{~cm}^{3}$
$01 l=1000 \mathrm{ml}$
$01 \mathrm{ml}=1 \mathrm{~cm}^{3}$


## Calculation Time!

Questions:

1) $10 \mathrm{~m}^{3}=\ldots \quad \mathrm{cm}^{3}$
2) $7 \mathrm{l}=\ldots \mathrm{ml}$
3) $2000 \mathrm{ml}=\ldots \quad \mathrm{cm}^{3}$
4) $90,000 \mathrm{~cm}^{3}=\ldots \mathrm{m}^{3}$

Answers:

1) $10,000,000 \mathrm{~cm}^{3}$
2) 7000 ml
3) $2000 \mathrm{~cm}^{3}$
4) $0.09 \mathrm{~m}^{3}$

## Volume of Regular Solids

-Calculate from formulae.


Cuboid: V = Ix $\boldsymbol{b} \boldsymbol{x} \boldsymbol{h}$

Cylinder: $V=\pi r^{2} h$


## Volume of Liquids

OInstruments commonly used in the laboratory for measuring volumes of liquids include: oMeasuring cylinder oBurette
oPipette oVolumetric flask


Pipette

## Meniscus Reading

- Note that the liquid in the measuring cylinder curves downwards as shown in the diagram below. This is known as the meniscus.
oThe meniscus of most liquids curves downwards.



## Meniscus Reading

- The correct way to read the meniscus is to position the eye at the same level as the meniscus and take reading at the bottom of the meniscus.


## Volume of Small Irregular Solids

For finding volumes of small irregular solids, place the object in a measuring cylinder containing water.


## Volume of Small Irregular Solids

For finding volumes of large irregular solids, place the object in a displacement or Eureka can. Then use a measuring cylinder to collect the displaced water.

## Volume of Water Displaced by Object = Volume of Object



Animation


## Density

Exploring Diversity of Matter by Its Physical
Properties

## Density

Take a look at the two boxes below. Each box has the same volume.


Box A


Box B

If each ball has the same mass, which box would weigh more? Why?

## Density

The box that has more balls has more mass per unit of volume. This property of matter is called density.

## Density

-It is the mass of the substance in a unit volume.
-SI unit: kilogram per cubic metre ( $\mathrm{kg} / \mathrm{m}^{3}$ )
-Other units: $\mathrm{g} / \mathrm{cm}^{3}$
-Formula:

$$
\text { Density }=\frac{\text { Mass }}{\text { Volume }}
$$

## Density

## Densities of gases are very low compared with those of solids and liquids.

| Substance |  |  | mercury |
| :---: | :---: | :---: | :---: |
| Density | $19.3 \mathrm{~g} / \mathrm{cm}^{3}$ | $2.5 \mathrm{~g} / \mathrm{cm}^{3}$ | $13.6 \mathrm{~g} / \mathrm{cm}^{3}$ |
| Substance | water | cork |  |
| Density | $1.0 \mathrm{~g} / \mathrm{cm}^{3}$ | $0.25 \mathrm{~g} / \mathrm{cm}^{3}$ | $0.0013 \mathrm{~g} / \mathrm{cm}^{3}$ |

## Density

All pieces of the same substances have the same density regardless of size and shape.

The density of a substance helps to distinguish it from other substances.


Water in both the bottle and the glass have the same density.

## Example

The mass of a stone is 180 g . Its volume is $50 \mathrm{~cm}^{3}$. What is the density of the stone in $\mathrm{g} / \mathrm{cm}^{3}$ ?

## Solution:

Density of the stone $=$ Mass $\div$ Volume

$$
\begin{aligned}
& =180 \mathrm{~g} \div 50 \mathrm{~cm}^{3} \\
& =\underline{3.60 \mathrm{~g} / \mathrm{cm}^{3}}
\end{aligned}
$$

## Test Yourself!!!

Osmium, the densest metal found, has a density of $22.6 \mathrm{~g} / \mathrm{cm}^{3}$. The mass of a block of osmium was found to be 113 g . Find its volume.

## Solution:

Volume $=$ Mass $\div$ Density

$$
\begin{aligned}
& =113 \mathrm{~g} \div 22.6 \mathrm{~g} / \mathrm{cm} 3 \\
& =\underline{5 \mathrm{~cm}^{3}}
\end{aligned}
$$

Density Equation


## Measuring Density

## Density of a substance can be found in 2 steps:

1) Measure the mass and volume of the substance.
2) Divide the mass by its volume.

## Density Floating Lab 101

http://www.sciencejoywagon.com/explrsci/media/density.htm

## Floating and Sinking

- The ability of an object to float or sink in a liquid depends on its density.
- Less dense substances float in denser liquids.
- Denser substances sink in less dense liquids.


## Floating and Sinking



## Why do Iron Ship Float

Iron is denser than water.

## solid iron



BoxA


Box B

## Why do Iron Ship Float?

Box A contains solid iron and therefore has a higher density. It sinks.

Box B is hollow and contains iron and a large volume of air. Therefore overall density is less than box A. It floats.

